Dynamic Programming

An Introduction to DP

Dynamic Programming?

- A programming technique
- Solve a problem by breaking into smaller subproblems
- Similar to recursion with memoisation
- Usefulness: Efficiency
- Exponential to Polynomial
- Trades memory for speed
- Frequently used in Olympiads

Fibonacci Numbers

- A sequence where every number is the sum of the previous 2
- $1,1,2,3,5,8,13, \ldots$
- What is the $N^{\text {th }}$ Fibonacci number, $\mathrm{F}(\mathrm{N})$?
- We will solve this using several different techniques

Fibonacci Numbers: Recursion

- Split problem into smaller sub-problems

$$
F(N)=F(N-1)+F(N-2)
$$

- Solve the smaller sub-problems:
$\therefore \mathrm{F}(\mathrm{N}-1)=\mathrm{F}(\mathrm{N}-2)+\mathrm{F}(\mathrm{N}-3)$
- etc.
- Terminates when we reach the base case
- $\mathrm{F}(1), \mathrm{F}(2)$ are defined to be 1

Fibonacci Numbers: Recursion

int fibonacci(int n)
\{
if ($\mathrm{n}<=2$)
return 1 ;
return fibonacci(n-1) + fibonacci(n-2);
\}

Fibonacci Numbers: Recursion

Fibonacci Numbers: Recursion

Fibonacci Numbers: Recursion

Many repeated recursive calls!

Fibonacci Numbers: Recursion

- Exponential time complexity - bad!
- The cause: repeated sub-problems
- Solution: store the results of each sub-problem - Trade memory for speed

Fibonacci Numbers: Memoisation

- Optimisation technique that avoids repeated function calls
- When we find $\mathrm{F}(\mathrm{x})$, store it
- Next time we need it, use stored result

Fibonacci Numbers: Memoisation

Exponential to Linear!

Fibonacci Numbers: DP

- Memoisation, but bottom-up
- Start from base case
- Build up to the given problem

Fibonacci Numbers: DP

Efficiency class: O(N)

Fibonacci Numbers: DP

$$
\begin{aligned}
& \text { int fib(int } n \text {) } \\
& \begin{array}{l}
\text { \{ } \\
\text { int } f[n+1] ; \\
f[0]=1 ; \\
f[1]=1 ; \\
\text { for (int } \mathrm{i}=2 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\
\quad \mathrm{f}[\mathrm{i}]=\mathrm{f}[\mathrm{i}-2]+\mathrm{f}[\mathrm{i}-1] ;
\end{array}
\end{aligned}
$$

return f[n];

Fibonacci Numbers

- Our techniques require breaking the problem into smaller sub-problems
- Used the relation $\mathrm{F}(\mathrm{N})=\mathrm{F}(\mathrm{N}-1)+\mathrm{F}(\mathrm{N}-2)$
- Always reaches base case
- The output $\mathrm{F}(\mathrm{N})$ only depends on the input N
- So bottom-up works
- DP faster

How to DP

- Identify the recurrence relation/dependency
- Construct a recursive function as the solution
- The answer must depend only on the parameters
- A 'mathematical' function, e.g. F(N)
- Use as few parameters as possible
- Use an array to store the results
- Multi-dimensional? (One for each parameter)
- Nested Loops from base case to given problem
- Order must satisfy dependencies

DP vs Recursion

- Advantages:
- Speed
- Code simpler
- Disadvantages:
- Memory (multi-dimensional!)
- Conceptually more difficult
- Not always possible

DP vs Recursion with Memoisation

- Theoretically equivalent
- Same time complexity
- Bottom-up vs Top-down
- Advantages:
- Less memory
- Stack + function call overhead
- Memory saving trick (later)
- Disadvantages:
- Conceptually more difficult
- Complicated dependencies?

Another example: Coin Counting

- We want to make M cents of change
- N different types of coins are available (V[1]...V[N])
- Least number of coins?

Coin Counting

- Dependency:
${ }^{-}$coins $(M)=1+\min \{\operatorname{coins}(M-V[1]), \ldots, c o i n s(M-V[N])\}$
- Invalid coins(M): no smaller problems solved
- Base case: coins(o) = o
- Implementation
- A coins array with coins[o] = 0
- Everything else initialised to -1
- Loop from 1 to M, using the dependency for coins[i]

Coin Counting

M	0	1	2	3	4	5	6	7
Min \# coins	0	-1	1	1	2	1	2	2

Given coins (V[N]): $\{2,3,5\}$

Coin Counting

```
int N, M;
int V[N];
int coins[M + 1];
set(coins[0], coins[M], -1);
coins[0] = 0;
for(int i = 1; i <= M; i++)
{
    int best = M;
    for(int j = 0; j < N; j++)
            if (V[j] <= i && coins[i - V[j]] != -1 && coins[i - V[j]] + 1 < best)
                        best = coins[i - V[j]] + 1;
    coins[i] = best;
}
```


Backtracking

- Unnecessary info suggests DP
- But sometimes, require the 'path' to the solution
- Coin Counting:
- Find the minimum number of coins
- But also output which coins they are

Backtracking

- General: For each value from base to M:
- Use array as before
- But also use an array to store path
- Memory concerns
- Coins: For each value from o to M:
- Store min \# coins
- Store last coin used
- Can backtrack to find path from o to M
- Trade speed for memory

Backtracking: Coin Counting

M	0	1	2	3	4	5	6	7
Min \# coins	0	-1	1	1	2	1	2	2
Last coin	-1	-1	2	3	2	5	3	2

Given coins (V[N]): $\{2,3,5\}$

Backtracking: Coin Counting

M	0	1	2	5	4	5	$\mathbf{6}$	7
Min \# coins	0	-1	1	1	2	1	2	2
Last coin	-1	-1	2	3	2	5	3	2

Given coins (V[N]): $\{2,3,5\}$
'Path': \{5,2\}

Backtracking: Coin Counting

int N, M; int V[N];
int coins[M + 1];
int coinUsed[M + 1];

```
coins[0] \(=0\);
for (int i = 1; i <= M; i++)
\{
    int best \(=\mathrm{M}\);
    int coin \(=-1\);
    for (int j = 0; j < N; j++)
        if \((\mathrm{V}[\mathrm{j}]<=\mathrm{i} \& \& \operatorname{coins[i}-\mathrm{V}[j]]+1<\) best \()\)
        \{
            best \(=\operatorname{coins}[i-V[j]]+1\);
            coin \(=j\);
```

 \}
 coins[i] = best;
 coinUsed[i] = coin;
 \}

Multi-Dimensional DPs

- So far, 1D
- $\mathrm{F}[\mathrm{N}]=\mathrm{F}[\mathrm{N}-1]+\mathrm{F}[\mathrm{N}-2]$
- Coins[M]=1+ $\min \{\operatorname{coins(M-V[1]),...,coins(M-V[N])\} ~}$
- 2D or more often required

Example: Number of paths

You start at the bottom left of a NxM rectangular grid, and can only move upward or right. How many ways are there of getting to the top right corner?

Number of Paths

- Want the \# paths from start to end
- State for DP: \# paths from start to any given square
- Identify the dependency
- Can only get to a square from below or the left
- There is no overlap from below or from left
- \# ways to get to a square is the sum

Number of Paths

- Dependency:
- paths[width][height] = paths[width-1][height] + paths[width][height-1]
- 2D recurrence relationship
- Having identified this:
- Construct the recursive function
- Use a 2D array to store results
- Use nested looping in a valid order to populate array

Number of Paths

- Use nested looping in a valid order Outer Loop

Number of Paths

- Use nested looping in a valid order

Outer Loop

| 4 | 9 | 15 | 35 | 70 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 10 | 20 | 35 |
| 1 | 3 | 6 | 10 | 15 |
| 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 1 | 1 | 1 |

Memory Saving Technique

- Array for all values is inefficient
- May be too large
- Particularly for > 1D
- Store only subset of the parameter space
- Dependency determines which values needed
- Like a slider
- Change the letter if $3 / 5$ chars before are ' T ':
- TFTT $\xrightarrow{\text { FTFFTFTTTFTF }}$

Memory Saving Technique

- Fibonacci:
$\square \mathrm{F}(\mathrm{N})=\mathrm{F}(\mathrm{N}-1)+\mathrm{F}(\mathrm{N}-2)$
- Only need previous 2 values
- Array unnecessary

Memory Saving Technique

```
int fib (int n)
{
    int f1, f2 = 1;
    for(int i = 2; i <= n; i++)
    {
            int temp = f2;
            f2 = f1 + f2;
    f1 = temp;
    }
    return f2;
}
```


Memory saving technique

- More relevant for higher dimensions
- Often store only the last row, or last 2 rows, etc.
- Number of paths:
- Only previous column needed

DP: The difficulty

- Knowing what to DP on (which dependency/ 'state'?)
- Which parameters to use
- Sometimes use DP for a sub-problem only
- Finding the relation/dependency

How to Identify a DP Problem

- Typical Traits:
- Some main integer variables, e.g. N
- Neither large nor very small ($30<\mathrm{N}<10000$)
- $\mathrm{O}\left(N^{2}\right)$ or $\mathrm{O}\left(N^{3}\right)$ acceptable
- 'States' exist (configurations/situations)
- Higher states can be derived from lower states
- These are only rough rules of thumb
- No fool-proof rules exist

Example: Subset Sums

- For many sets of consecutive integers from 1 through N ($1<=\mathrm{N}<=$ 39), one can partition the set into two sets whose sums are identical.
- For example, if $\mathrm{N}=3$, one can partition the set $\{1,2,3\}$ in one way so that the sums of both subsets are identical: $\{3\}$ and $\{1,2\}$
- Reversing the order counts as the same partitioning
- If $\mathrm{N}=7$, there are four ways to partition the set $\{1,2,3, \ldots 7\}$ so that each partition has the same sum:
- $\{1,6,7\}$ and $\{2,3,4,5\}$
- $\{2,5,7\}$ and $\{1,3,4,6\}$
- $\{3,4,7\}$ and $\{1,2,5,6\}$
- $\{1,2,4,7\}$ and $\{3,5,6\}$
- Given N, your program should print the number of ways a set containing the integers from 1 through N can be partitioned into two sets whose sums are identical. Print o if there are no such ways.

Reminder: How to DP

- Identify the state \& recurrence relation
- Construct a recursive function as the solution
- The answer must depend only on the parameters
- A 'mathematical' function, e.g. $\mathrm{F}(\mathrm{N})$
- Use as few parameters as possible
- Use an array to store the results
- Multi-dimensional? (One for each parameter)
- Nested Loops from base case to given problem
- Order must satisfy dependencies

Subset Sums

- State:
- partitions(N,D) counts the \# of partitionings of $\{1,2, \ldots, \mathrm{~N}\}$ into two sets which differ by D
- $\mathrm{D} \leq \mathrm{N}(\mathrm{N}+1) / 2$

Subset Sums

- State:
- Partitions(N,D) counts the \# of partitionings of $\{1,2, \ldots, \mathrm{~N}\}$ into two sets which differ by D
- $\mathrm{D} \leq \mathrm{N}(\mathrm{N}+1) / 2$
- Dependency:
- $\mathrm{p}(\mathrm{N},|\mathrm{D}|)=\mathrm{p}(\mathrm{N}-1,|\mathrm{D}-\mathrm{N}|)+\mathrm{p}(\mathrm{N}-1,|\mathrm{D}+\mathrm{N}|)$
- If we remove the no. ' N ', we need the difference between the remaining sets to be $\mathrm{D} \pm \mathrm{N}$
- This was the difficult part

Reminder: How to DP

- Identify the state \& recurrence relation
- Construct a recursive function as the solution
- The answer must depend only on the parameters
- A 'mathematical' function, e.g. F(N)
- Use as few parameters as possible
- Use an array to store the results
- Multi-dimensional? (One for each parameter)
- Nested Loops from base case to given problem
- Order must satisfy dependencies

Subset Sums

- Base case: $\mathrm{N}=1$
- $\mathrm{p}[1][1]=1$
${ }^{-} \mathrm{p}[1][\mathrm{x}]=\mathrm{o}$ for other x
- Nested looping in a valid order:
- Need all p[N-1][i] before any p[N][j]
- Loop from $\mathrm{N}=0$ to $\mathrm{N}=$ problem size
- For each N, find p[N][D] for each D

Subset Sums

Outer loop

