
Dynamic Programming
An Introduction to DP

Dynamic Programming?

• A programming technique

▫ Solve a problem by breaking into smaller sub-
problems

▫ Similar to recursion with memoisation

• Usefulness: Efficiency

▫ Exponential to Polynomial

▫ Trades memory for speed

• Frequently used in Olympiads

Fibonacci Numbers

• A sequence where every number is the sum of

the previous 2

• 1, 1, 2, 3, 5, 8, 13, …

• What is the 𝑁𝑡ℎ Fibonacci number, F(N)?

▫ We will solve this using several different
techniques

Fibonacci Numbers: Recursion

• Split problem into smaller sub-problems

▫ F(N) = F(N-1) + F(N-2)

• Solve the smaller sub-problems:

▫ F(N-1) = F(N-2) + F(N-3)

▫ etc.

• Terminates when we reach the base case

▫ F(1), F(2) are defined to be 1

Fibonacci Numbers: Recursion

int fibonacci(int n)

{

 if (n <= 2)

 return 1;

 return fibonacci(n - 1) + fibonacci(n - 2);

}

Fibonacci Numbers: Recursion

F(6)

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1)

F(7)

Fibonacci Numbers: Recursion

8

3

2 1

1 1

5

3 2

2 1 1 1

1 1

5

3 2

2 1 1 1

1 1

13

Fibonacci Numbers: Recursion

F(6)

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1)

F(7)

Many repeated recursive calls!

Fibonacci Numbers: Recursion

• Exponential time complexity – bad!

• The cause: repeated sub-problems

• Solution: store the results of each sub-problem

▫ Trade memory for speed

Fibonacci Numbers: Memoisation

• Optimisation technique that avoids repeated

function calls

▫ When we find F(x), store it

▫ Next time we need it, use stored result

Fibonacci Numbers: Memoisation

F(6) = 8

3 F(5)= 5

F(4)=3 2

F(3)=2 1

F(2)=1 F(1)=1

5

F(7)=13

Exponential to Linear!

Fibonacci Numbers: DP

• Memoisation, but bottom-up

▫ Start from base case

▫ Build up to the given problem

Fibonacci Numbers: DP

F(6) = 8

3 F(5)= 5

F(4)=3 2

F(3)=2 1

F(2)=1 F(1)=1

5

F(7) = 13

Efficiency class: O(N)

Fibonacci Numbers: DP

int fib(int n)
{
 int f[n+1];
 f[0] = 1;
 f[1] = 1;
 for (int i = 2; i <= n; i++)
 f[i] = f[i – 2] + f[i – 1];
 return f[n];
}

Fibonacci Numbers

• Our techniques require breaking the problem into

smaller sub-problems

▫ Used the relation F(N) = F(N-1) + F(N-2)

▫ Always reaches base case

• The output F(N) only depends on the input N

▫ So bottom-up works

• DP faster

How to DP

• Identify the recurrence relation/dependency

• Construct a recursive function as the solution

▫ The answer must depend only on the parameters

▫ A ‘mathematical’ function, e.g. F(N)

▫ Use as few parameters as possible

• Use an array to store the results

▫ Multi-dimensional? (One for each parameter)

• Nested Loops from base case to given problem

▫ Order must satisfy dependencies

DP vs Recursion

• Advantages:

▫ Speed

▫ Code simpler

• Disadvantages:

▫ Memory (multi-dimensional!)

▫ Conceptually more difficult

▫ Not always possible

DP vs Recursion with Memoisation

• Theoretically equivalent
• Same time complexity
• Bottom-up vs Top-down
• Advantages:

▫ Less memory
 Stack + function call overhead
 Memory saving trick (later)

• Disadvantages:
▫ Conceptually more difficult

 Complicated dependencies?

Another example: Coin Counting

• We want to make M cents of change

• N different types of coins are available (V[1]…V[N])

• Least number of coins?

Coin Counting

• Dependency:

▫ coins(M) = 1+ min {coins(M-V[1]),…,coins(M-V[N])}

▫ Invalid coins(M): no smaller problems solved

▫ Base case: coins(0) = 0

• Implementation

▫ A coins array with coins[0] = 0

▫ Everything else initialised to -1

▫ Loop from 1 to M, using the dependency for coins[i]

Coin Counting

M 0 1 2 3 4 5 6 7

Min #
coins

0 -1 1 1 2 1 2 2

Given coins (V[N]): {2,3,5}

Coin Counting
int N, M;
int V[N];
int coins[M + 1];

set(coins[0], coins[M], -1);
coins[0] = 0;
for (int i = 1; i <= M; i++)
{
 int best = M;
 for (int j = 0; j < N; j++)
 if (V[j] <= i && coins[i – V[j]] != -1 && coins[i – V[j]] + 1 < best)
 best = coins[i – V[j]] + 1;
 coins[i] = best;
}

Backtracking

• Unnecessary info suggests DP

• But sometimes, require the ‘path’ to the solution

• Coin Counting:

▫ Find the minimum number of coins

▫ But also output which coins they are

Backtracking

• General: For each value from base to M:

▫ Use array as before

▫ But also use an array to store path

 Memory concerns

• Coins: For each value from 0 to M:

▫ Store min # coins

▫ Store last coin used

 Can backtrack to find path from 0 to M

 Trade speed for memory

Backtracking: Coin Counting

M 0 1 2 3 4 5 6 7

Min #
coins

0 -1 1 1 2 1 2 2

Last
coin

-1 -1 2 3 2 5 3 2

Given coins (V[N]): {2,3,5}

Backtracking: Coin Counting

M 0 1 2 3 4 5 6 7

Min #
coins

0 -1 1 1 2 1 2 2

Last
coin

-1 -1 2 3 2 5 3 2

Given coins (V[N]): {2,3,5}

‘Path’: {5,2}

Backtracking: Coin Counting
int N, M;
int V[N];
int coins[M + 1];
int coinUsed[M + 1];

coins[0] = 0;
for (int i = 1; i <= M; i++)
{
 int best = M;
 int coin = -1;
 for (int j = 0; j < N; j++)
 if (V[j] <= i && coins[i – V[j]] + 1 < best)
 {
 best = coins[i – V[j]] + 1;
 coin = j;
 }
 coins[i] = best;
 coinUsed[i] = coin;
}

Less memory, more time…

Multi-Dimensional DPs

• So far, 1D

▫ F[N] = F[N-1] + F[N-2]

▫ Coins[M]=1+ min {coins(M-V[1]),…,coins(M-V[N])}

• 2D or more often required

Example: Number of paths

You start at the bottom left of a NxM rectangular

grid, and can only move upward or right. How

many ways are there of getting to the top right

corner?

END

START

Number of Paths

• Want the # paths from start to end

• State for DP: # paths from start to any given

square

• Identify the dependency

▫ Can only get to a square from below or the left

▫ There is no overlap from below or from left

▫ # ways to get to a square is the sum

 x x+y

y

Start

Number of Paths

• Dependency:
▫ paths[width][height] = paths[width-1][height] +

 paths[width][height-1]

▫ 2D recurrence relationship

• Having identified this:

▫ Construct the recursive function

▫ Use a 2D array to store results

▫ Use nested looping in a valid order to populate
array

Number of Paths

• Use nested looping in a valid order

Outer Loop

Number of Paths

• Use nested looping in a valid order

1 5 15 35 70

1 4 10 20 35

1 3 6 10 15

1 2 3 4 5

1 1 1 1 1

Outer Loop

Memory Saving Technique

• Array for all values is inefficient

▫ May be too large

▫ Particularly for > 1D

• Store only subset of the parameter space

• Dependency determines which values needed

• Like a slider

▫ Change the letter if 3/5 chars before are ‘T’:

 T F T T F T F F T F T T T F T F

Memory Saving Technique

• Fibonacci:

▫ F(N) = F(N-1) + F(N-2)

• Only need previous 2 values

▫ Array unnecessary

Memory Saving Technique

int fib (int n)
{
 int f1, f2 = 1;
 for (int i = 2; i <= n; i++)
 {
 int temp = f2;
 f2 = f1 + f2;
 f1 = temp;
 }
 return f2;
}

Memory saving technique

• More relevant for higher dimensions

• Often store only the last row, or last 2 rows, etc.

• Number of paths:

▫ Only previous column needed

DP: The difficulty

• Knowing what to DP on (which dependency/

‘state’?)

▫ Which parameters to use

▫ Sometimes use DP for a sub-problem only

• Finding the relation/dependency

How to Identify a DP Problem

• Typical Traits:

▫ Some main integer variables, e.g. N

▫ Neither large nor very small (30 < N < 10000)

▫ O(𝑁2) or O(𝑁3) acceptable

• ‘States’ exist (configurations/situations)

▫ Higher states can be derived from lower states

• These are only rough rules of thumb

▫ No fool-proof rules exist

Example: Subset Sums
• For many sets of consecutive integers from 1 through N (1 <= N <=

39), one can partition the set into two sets whose sums are identical.

• For example, if N=3, one can partition the set {1, 2, 3} in one way so
that the sums of both subsets are identical: {3} and {1,2}

• Reversing the order counts as the same partitioning

• If N=7, there are four ways to partition the set {1, 2, 3, ... 7} so that
each partition has the same sum:

▫ {1,6,7} and {2,3,4,5}

▫ {2,5,7} and {1,3,4,6}

▫ {3,4,7} and {1,2,5,6}

▫ {1,2,4,7} and {3,5,6}

• Given N, your program should print the number of ways a set
containing the integers from 1 through N can be partitioned into two
sets whose sums are identical. Print 0 if there are no such ways.

Reminder: How to DP

• Identify the state & recurrence relation
• Construct a recursive function as the

solution
▫ The answer must depend only on the parameters
▫ A ‘mathematical’ function, e.g. F(N)
▫ Use as few parameters as possible

• Use an array to store the results
▫ Multi-dimensional? (One for each parameter)

• Nested Loops from base case to given problem
▫ Order must satisfy dependencies

Subset Sums

• State:

▫ partitions(N,D) counts the # of partitionings of
{1,2,…,N} into two sets which differ by D

▫ D ≤ N(N+1)/2

Subset Sums

• State:

▫ Partitions(N,D) counts the # of partitionings of
{1,2,…,N} into two sets which differ by D

▫ D ≤ N(N+1)/2

• Dependency:

▫ p (N,|D|) = p(N-1,|D-N|) + p(N-1,|D+N|)

 If we remove the no. ‘N’, we need the difference
between the remaining sets to be D±N

• This was the difficult part

Reminder: How to DP

• Identify the state & recurrence relation
• Construct a recursive function as the solution

▫ The answer must depend only on the parameters
▫ A ‘mathematical’ function, e.g. F(N)
▫ Use as few parameters as possible

• Use an array to store the results
▫ Multi-dimensional? (One for each parameter)

• Nested Loops from base case to given
problem
▫ Order must satisfy dependencies

Subset Sums

• Base case: N=1

▫ p[1][1] = 1

▫ p[1][x] = 0 for other x

• Nested looping in a valid order:

▫ Need all p[N-1][i] before any p[N][j]

▫ Loop from N = 0 to N = problem size

 For each N, find p[N][D] for each D

Subset Sums

D | N 1 2 3

0 0 0 1

1 1 1 0

2 0 0 1

3 0 1 0

4 0 0 1

5 0 0 0

6 = N(N+1)/2 0 0 1

Outer loop

